Cbfa1, a Candidate Gene for Cleidocranial Dysplasia Syndrome, Is Essential for Osteoblast Differentiation and Bone Development

نویسندگان

  • Florian Otto
  • Anders P Thornell
  • Tessa Crompton
  • Angela Denzel
  • Kimberly C Gilmour
  • Ian R Rosewell
  • Gordon W.H Stamp
  • Rosa S.P Beddington
  • Stefan Mundlos
  • Bjorn R Olsen
  • Paul B Selby
  • Michael J Owen
چکیده

We have generated Cbfa1-deficient mice. Homozygous mutants die of respiratory failure shortly after birth. Analysis of their skeletons revealed an absence of osteoblasts and bone. Heterozygous mice showed specific skeletal abnormalities that are characteristic of the human heritable skeletal disorder, cleidocranial dysplasia (CCD). These defects are also observed in a mouse Ccd mutant for this disease. The Cbfa1 gene was shown to be deleted in the Ccd mutation. Analysis of embryonic Cbfa1 expression using a lacZ reporter gene revealed strong expression at sites of bone formation prior to the earliest stages of ossification. Thus, the Cbfa1 gene is essential for osteoblast differentiation and bone formation, and the Cbfa1 heterozygous mouse is a paradigm for a human skeletal disorder.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cleidocranial dysplasia: clinical and molecular genetics.

Cleidocranial dysplasia (CCD) (MIM 119600) is an autosomal dominant skeletal dysplasia characterised by abnormal clavicles, patent sutures and fontanelles, supernumerary teeth, short stature, and a variety of other skeletal changes. The disease gene has been mapped to chromosome 6p21 within a region containing CBFA1, a member of the runt family of transcription factors. Mutations in the CBFA1 g...

متن کامل

Transcriptional regulation of osteoblast differentiation during development.

The osteoblast is the bone-forming cell. The molecular basis of osteoblast-specific gene expression and differentiation begin to be understood. Following the characterization of OSE2, an osteoblast-specific cis-acting element present in the Osteocalcin promoter Osf2/Cbfa1, the protein that binds to OSE2, was identified. Osf2/Cbfa1 is a member of the runt family of transcription factors. Its exp...

متن کامل

Review article Cleidocranial dysplasia: clinical and molecular genetics

Cleidocranial dysplasia (CCD) (MIM 119600) is an autosomal dominant skeletal dysplasia characterised by abnormal clavicles, patent sutures and fontanelles, supernumerary teeth, short stature, and a variety of other skeletal changes. The disease gene has been mapped to chromosome 6p21 within a region containing CBFA1, a member of the runt family of transcription factors. Mutations in the CBFA1 g...

متن کامل

The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment.

Bone formation is a carefully controlled developmental process involving morphogen-mediated patterning signals that define areas of initial mesenchyme condensation followed by induction of cell-specific differentiation programs to produce chondrocytes and osteoblasts. Positional information is conveyed via gradients of molecules, such as Sonic Hedgehog that are released from cells within a part...

متن کامل

Identification of a novel RUNX2 gene mutation in an Italian family with cleidocranial dysplasia.

Cleidocranial dysplasia (CCD) is a rare, well-defined skeletal disorder with autosomal dominant inheritance and complete penetrance. Although it involves the whole skeletal system, the main clinical manifestations of CCD are malformations of the skull and clavicles, which lead to a typical appearance of the face and shoulders. Dental aspects are particularly evident and often eruption difficult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 89  شماره 

صفحات  -

تاریخ انتشار 1997